<ANVIDIA.

Cambridge-1: An Approach to Dynamic Multitenancy

Simon Traill, NGC Site Reliability Engineering | Lustre User Group@CIUK / 30th November, 2022

Cambridge-1: An Approach To Dynamic Multitenancy

On July 6, 2021, NVIDIA opened the Cambridge-1
supercomputer for use by life sciences providers.

* Slurm cluster consisting of 80 DGX A100 systems.

* Multiple tenants, each needing:
* Isolated compute

* Isolated storage

To support the datacentre, we were asked to create
a dynamic storage platform using Lustre on DDN
Exascaler.

...Using NodeMaps and GSSAPI

2 <&ANVIDIA. I

(Dynamic) Multitenancy in a Supercomputer

* Isolated Partitions:
Tenants typically isolated at the compute, network and

Control Plane (eg, Slurm)
storage (Lustre) layers.

Vs N\ Vs \‘
[1solated Network \ I' Isolated Network ;
| (Tenant A) : | (Tenant B) ;
I I I B . I
I 1o P
1 :

I GPU Node I I I

(Tenant A) 1 | i |
I (- N
| TR B H
I I I ----------------------------- 4 I
I I | |
1 1\ 1

\

B - /7 N [[. - ’
Storage (Tenant A) Storage (Tenant B)

3 <&NVIDIA. I

(Dynamic) Multitenancy in a Supercomputer

* Nodes are more dynamic:

Nodes need to switch partitions more frequently than
tenants as we allocate resources.

P e e e e

Control Plane (eg, Slurm)

Isolated Network
(Tenant A)

Storage (Tenant A)

— e ———

- = o —

Isolated Network
(Tenant B)

GPU Node

(Tenant B)

Storage (Tenant B)

e o e o o o e Em mm =

4 <ANVIDIA I

(Dynamic) Multitenancy in a Supercomputer

Control Plane (eg, Slurm)

Isolated Network
(Tenant B)

Isolated Network

* How should we handle Storage? (Tenant A)

* Multiple Lustre filesystems, Isolated Storage Networks?

* Need to automate (more) network provisioning, be it
ethernet, IB, LNET

* Might need multiple storage appliances (sorry, DDN).
* Secure user level authentication, eg Kerberos?

* Need to install and operate Kerberos!

— e o o . = o o . . —
e o e o o o e Em mm =

Storage (Tenant A) Storage (Tenant B)

5 <ANVIDIA. I

Objectives

Infrastructure is hard enough already

Encapsulated:
As few dependencies on external infrastructure as possible.

geufab'e: " . SN, t GET /tenants
eploy our multitenancy system again and again amongs
differing surrounding infrastructure. POST /tenants/<tenant>

Tenant lifecycle

Testable:
Test our system, ideally like software, without needing a
spare supercomputer.

Defined Public Interface: Per-tenant node Ilfecyde

Hide complexity, and reveal only a simple (REST, in this
case) AP GET /tenants/<tenant>/<nids>

POST /tenants/<tenant>/<nids>/<nid>

6 <ANVIDIA. I

Objectives

Infrastructure is hard enough already

Encapsulated:
As few dependencies on external infrastructure as possible.

Reusable: _ _ _ GET /tenants
Deploy our multitenancy system again and again amongst POST /tenants/<tenant>

differing surrounding infrastructure.
DELETE /tenants/<tenant>

Tenant lifecycle

Testable:
Test our system, ideally like software, without needing a

spare supercomputer.

Defined Public Interface: Per-tenant node llfecyde

Hide complexity, and reveal only a simple (REST, in this
case) API GET /tenants/<tenant>/<nids>

POST /tenants/<tenant>/<nids>/<nid>
DELETE /tenants/<tenant>/<nids>/<nid>

Our system needs to handle Authentication, Authorization and Isolation.

7 <ANVIDIA. I

Authentication
With Nodemaps, Filesets and SSK Keys

Mount RPC Request

On a single lustre filesystem:

* Create one nodemap per tenant.
Each NodeMap contains a list of NIDs (client nodes).

lctl nodemap_add my_tenant

* Create one fileset for each tenant.
Each Fileset allow access only to a top level directory.

lctl nodemap_set_fileset --name my_tenant \ True

--fileset /my_tenant

* Create one SSK Key for each tenant.

False)
_— Mount Denied
Clients must possess the SSK Key to mount the fileset.

False
lIIHHHIHHHHiI'
. T
1gss_sk -t client -f my_fs \ \L rue
-n my_tenant \ Mount
/mnt/my_tenant
-w my_secret_key

9 <EANVIDIA. I

Isolation
Data in flight needs to be private

Encryption?

v v

Server Server

* Encryption brings a 30%-70% throughput penalty for IOPs Server

* Perhaps not.

Infiniband allows for "Limited" or "Full" partition membership.

* Limited network members can only talk to full members
Client

Solution:

..

* Lustre serving nodes use full IB membership.
* Lustre client nodes use limited IB membership.
* Fewer moving parts.

* We do allow encryption using (GSSAPI skpi) to be enabled as a config
setting for ethernet users...

* ...who, generally, care less about performance.

10 <ANVIDIA. I

Automation

How can we expose this as an API?

Lustre has a high level API... but not for the constructs we're using.

* No C developers; limited time.
* Instead, we implemented an APl over 1ctl itself.
* Bind the concepts of nodemaps, filesets and ssk keys together into a tenant.

* Allow client node NIDs to be added and removed from each tenant.

Tenant lifecycle Per-tenant node lifecycle
GET /tenants GET /tenants/<tenant>/<nids>
POST /tenants/<tenant> POST /tenants/<tenant>/<nids>/<nid>

17 <ANVIDIA. I

Automating Tenants
An APl to CRUD Lustre "tenants"

Tenant provisioning is time consuming.
* Nodemap, fileset and SSK key creation take a while (minutes).

* POST /tenants/<tenant>:
* Creates a state marker stating that "<tenant> should be created".

* Returns a pollable job id.

$ curl -X POST http://lustre-api-endpoint/vl/tenants/my tenant

{"message": "Changes were queued for processing", "jobid":
"9e3d6fd3-70e9-4174-ab80-56d8d29e3428"}

Tenants are reconciled asynchronously.

An asynchronous reconciliation process constantly ensures that:

* A fileset exists for each tenant.

* An SSK has been created for each tenant.

* A nodemap exists for each tenant.

* The above are removed when a tenant has been deleted.

* The reconciler invokes 1ctl (and other commands) on the MGS.

POST /tenants/my_tenant

: API Service :

Reconciler

State Markers

my_tenant: {exists: true},

my_deleted tenant: {exists:

Update
Filesets

--
.

Update
Nodemaps

18 <EANVIDIA. I

http://lustre-api-endpoint/v1/tenants/my_tenant

Automating Client Nodes

Node APl updates must be (somewhat) quicker

Node provisioning changes happen far more frequently than those for tenants.

* POST /tenants/<tenant>/nids/<nid>:
* Enqueues a nodemap change operation; alters client nodes to be granted or denied access to a Nodemap.
* Returns a pollable job id.
* Can be synchronous.
* Needs to be quicker than tenant setup.

$ time curl -X POST http://lustre-api-endpoint/vl/tenants/my tenant/nids?sync --data "{"nids": ["192.168.0.13"]1}

real Om2.569s

Tenant lifecycles can be slow; node allocations must be fast(ish).

19 <ANVIDIA I

http://lustre-api-endpoint/v1/tenants/my_tenant/nids%3Fsync%C2%A0--data%C2%A0%2522%257b%2522nids%2522:%C2%A0%255b%2522192.168.0.13%2522%255d

Automating Client Nodes

Ordering of updates is not guaranteed (probably by design):

If you add a node to a nodemap, remove it, then add it again — quickly — the end state is unknown.
The node might have been added, or it might not.
Fine for a CLI; less good for a REST API.

Waiting for each NID change to be reflected via 1ctl get _param preserves ordering (but is slower).

Updates to unrelated NID ranges — different nodes - can be made in parallel without waiting.

...plus, in general, swamping 1ctl is probably not a good idea.

20 NVIDIA.

Automating Client Nodes
Solution: enqueue NID updates per-node
Node (NID) updates therefore use a per-node queueing system.

* Slow(er) for individual nodes; but

* Fast(er) across many.

First Operation: Second Operation: Third Operation:
POST ../tenant/nids/host1l DELETE ../tenant/nids/host1 POST ../tenant/nids/host2
£ = \ Y \ T == \ Y S \ T == \ s \
I’Queue(hostl) | Il Queue (host2) 1 Il Queue (host1) | Il Queue (host2) | Il Queue (hostl) | I’Queue (host2) 1

| | |
| | | : | | : | ;

| | | I | |
| I | I | I | | | I | I
' ! I ' ! I ' ! I
| | | | | |

| | | | | |
| | | | | |

| | | | | |
| | | | | |

| | | | | |
| | | | | |

| | | | | |
| | | | | |
| : | ; | : | ; | : | ;

] I]
N e - = D -,) /l N e e e - -, S /l N e e /l
Time

-7

21 <&ANVIDIA I

Put It All Together

Tenant lifecycles handled using nodemaps, filesets, SSK Keys, and a
reconciler

Node isolation handled by adding or removing NIDs from nodemaps,
throttled by per-node queues

Interactions happen via REST API

22 <ANVIDIA. I

Final Design

Drop in containers, run adjacent to a vanilla DDN / Lustre

Lustre Control API
REST API Job Enqueuing

Tenant Administration

Tenant Management

GET /tenants
POST /tenants/<tenant>

DELETE /tenants/<tenant>

HPC Compute POST /tenants/<tenant>/nids/<nid>

GPU Node GPU Node

e A (Tenant B) Lustre Control Commands (1ctl) & reconciler deployment

DDN Exascaler / Lustre

Lustre

Lustre Mount 5
Reconciler

Lustre Mount

/mnt/tenant_a /mnt/tenant_b

Limited Limited

Storage Infiniband Partition (Limited / Full Membership)

23 <ANVIDIA. I

Thoughts

Nodemap authN probably shouldn't depend on node NIDs if other GSSAPI methods are present.
* NIDs can trivially be spoofed if a client's root account is compromised.
* The SSK key is important to authN a client node. The NID is not.

* This would allow us to remove the NID update queueing system.
Your milage with GSSAPI (SSK Keys and Kerberos) may vary.
* We've seen various context related race conditions which can hang mounts on occasion.

* More usage of GSSAPI in the wild might help!

It would be great if Lustre had a high level (REST? GraphQL?) API over constructs like nodemaps.

* Although then you would have missed out on this presentation.

The DDN virtual appliance was extremely helpful:

¢ ...thanks to DDN in general and Rich Mansfield in particular for providing us with the lovely lightweight-vagrant-exascaler.

24 <SANVIDIA. I

<ANVIDIA.

Thank you!

Any questions? straill@nvidia.com

