
1

Cambridge-1: An Approach to Dynamic Mul:tenancy
Simon Traill, NGC Site Reliability Engineering | Lustre User Group@CIUK / 30th November, 2022



2

Cambridge-1: An Approach To Dynamic Mul:tenancy
...Using NodeMaps and GSSAPI

On July 6, 2021, NVIDIA opened the Cambridge-1 
supercomputer for use by life sciences providers.

• Slurm cluster consisQng of 80 DGX A100 systems.

• MulQple tenants, each needing:
• Isolated compute
• Isolated storage

To support the datacentre, we were asked to create 
a dynamic storage plaXorm using Lustre on DDN 
Exascaler.



3

(Dynamic) Mul:tenancy in a Supercomputer

GPU Node
(Tenant A)

Storage (Tenant A)

Isolated Network
(Tenant A)

Control Plane (eg, Slurm)

Storage (Tenant B)

Isolated Network
(Tenant B)

• Isolated Par--ons:
Tenants typically isolated at the compute, network and 
storage (Lustre) layers.



4

(Dynamic) Multitenancy in a Supercomputer

DGX (Tenant A)

Storage (Tenant A)

Isolated Network
(Tenant A)

Control Plane (eg, Slurm)

GPU Node
(Tenant B)

Storage (Tenant B)

Isolated Network
(Tenant B)

• Isolated Partitions:
Tenants typically isolated at the compute, network and 
storage (Lustre) layers.

• Nodes are more dynamic:
Nodes need to switch partitions more frequently than 
tenants as we allocate resources.



5

(Dynamic) Multitenancy in a Supercomputer

DGX (Tenant A)

Storage (Tenant A)

Isolated Network
(Tenant A)

Control Plane (eg, Slurm)

GPU Node
(Tenant B)

Storage (Tenant B)

Isolated Network
(Tenant B)

• Isolated Partitions:
Tenants isolated at the compute, network and storage 
(Lustre) layers.

• Nodes might be dynamic:
Nodes can switch partitions.

• How should we handle Storage?
• Multiple Lustre filesystems, Isolated Storage Networks?

• Need to automate (more) network provisioning, be it 
ethernet, IB, LNET

• Might need multiple storage appliances (sorry, DDN).

• Secure user level authentication, eg Kerberos?
• Need to install and operate Kerberos!



6

Objec:ves
Infrastructure is hard enough already

• Encapsulated:
As few dependencies on external infrastructure as possible.

• Reusable: 
Deploy our mulQtenancy system again and again amongst 
differing surrounding infrastructure.

• Testable:
Test our system, ideally like so^ware, without needing a 
spare supercomputer.

• Defined Public Interface:
Hide complexity, and reveal only a simple (REST, in this 
case) API

GET /tenants
POST /tenants/<tenant>
DELETE /tenants/<tenant>

GET /tenants/<tenant>/<nids>
POST /tenants/<tenant>/<nids>/<nid>
DELETE /tenants/<tenant>/<nids>/<nid>

Tenant lifecycle

Per-tenant node lifecycle



7

Objec:ves
Infrastructure is hard enough already

GET /tenants
POST /tenants/<tenant>
DELETE /tenants/<tenant>

GET /tenants/<tenant>/<nids>
POST /tenants/<tenant>/<nids>/<nid>
DELETE /tenants/<tenant>/<nids>/<nid>

Tenant lifecycle

Per-tenant node lifecycle

Our system needs to handle Authentication, Authorization and Isolation.

• Encapsulated:
As few dependencies on external infrastructure as possible.

• Reusable: 
Deploy our mulQtenancy system again and again amongst 
differing surrounding infrastructure.

• Testable:
Test our system, ideally like so^ware, without needing a 
spare supercomputer.

• Defined Public Interface:
Hide complexity, and reveal only a simple (REST, in this 
case) API



9

SSK Key 
Match?

NID 
Match?

Mount RPC Request

Mount 
/mnt/my_tenant

False

True

True

False

Mount Denied

Mount Denied

On a single lustre filesystem:

• Create one nodemap per tenant.
Each NodeMap contains a list of NIDs (client nodes).

lctl nodemap_add my_tenant

• Create one fileset for each tenant.
Each Fileset allow access only to a top level directory.

lctl nodemap_set_fileset --name my_tenant \

--fileset /my_tenant

• Create one SSK Key for each tenant.
Clients must possess the SSK Key to mount the fileset.

lgss_sk -t client -f my_fs \

-n my_tenant \

-w my_secret_key

Authentication
With Nodemaps, Filesets and SSK Keys



10

Isola:on

Encryp-on?

• Encryp-on brings a 30%-70% throughput penalty for IOPs
• Perhaps not.

Infiniband allows for "Limited" or "Full" par--on membership.
• Full network peers can talk to anyone
• Limited network members can only talk to full members

Solu-on:
• Lustre serving nodes use full IB membership.
• Lustre client nodes use limited IB membership.
• Fewer moving parts.
• We do allow encrypQon using (GSSAPI skpi) to be enabled as a config 

seeng for ethernet users...
• ...who, generally, care less about performance.

Data in flight needs to be private

Server Server Server

Client Client Client

☑ ☑☑

🚫 🚫



17

Automation
How can we expose this as an API?

Lustre has a high level API... but not for the constructs we're using.

• No C developers; limited Qme.

• Instead, we implemented an API over lctl itself.

• Bind the concepts of nodemaps, filesets and ssk keys together into a tenant.

• Allow client node NIDs to be added and removed from each tenant.

GET /tenants
POST /tenants/<tenant>
DELETE /tenants/<tenant>

GET /tenants/<tenant>/<nids>
POST /tenants/<tenant>/<nids>/<nid>
DELETE /tenants/<tenant>/<nids>/<nid>

Tenant lifecycle Per-tenant node lifecycle



18

Automating Tenants

Tenant provisioning is -me consuming.

• Nodemap, fileset and SSK key creaQon take a while (minutes).

• POST /tenants/<tenant>:
• Creates a state marker staAng that "<tenant> should be created".
• Returns a pollable job id.

$ curl –X POST http://lustre-api-endpoint/v1/tenants/my_tenant

{"message": "Changes were queued for processing", "jobid": 
"9e3d6fd3-70e9-4174-ab80-56d8d29e3428"}

Tenants are reconciled asynchronously.

An asynchronous reconciliaQon process constantly ensures that:

• A fileset exists for each tenant.
• An SSK has been created for each tenant.
• A nodemap exists for each tenant.
• The above are removed when a tenant has been deleted.
• The reconciler invokes lctl (and other commands) on the MGS.

An API to CRUD Lustre "tenants"

API Service

POST /tenants/my_tenant

State Markers

my_tenant: {exists: true},

Update 
Filesets

Update
SSKs

Update
Nodemaps

my_deleted_tenant: {exists: false},

Reconciler

http://lustre-api-endpoint/v1/tenants/my_tenant


19

Automa:ng Client Nodes

Node provisioning changes happen far more frequently than those for tenants.

• POST /tenants/<tenant>/nids/<nid>:
• Enqueues a nodemap change operation; alters client nodes to be granted or denied access to a Nodemap.
• Returns a pollable job id.
• Can be synchronous.
• Needs to be quicker than tenant setup.

$ time curl –X POST http://lustre-api-endpoint/v1/tenants/my_tenant/nids?sync --data "{"nids": ["192.168.0.13"]}

real 0m2.569s

Tenant lifecycles can be slow; node allocations must be fast(ish).

Node API updates must be (somewhat) quicker

http://lustre-api-endpoint/v1/tenants/my_tenant/nids%3Fsync%C2%A0--data%C2%A0%2522%257b%2522nids%2522:%C2%A0%255b%2522192.168.0.13%2522%255d


20

Automating Client Nodes
More haste, less speed

Lctl (or rather, the MGS) does not guarantee the order of rapid node updates.

Ordering of updates is not guaranteed (probably by design):

If you add a node to a nodemap, remove it, then add it again – quickly – the end state is unknown.

• The node might have been added, or it might not.

• Fine for a CLI; less good for a REST API.

However (aYer rather a lot of tes-ng):

• WaiQng for each NID change to be reflected via lctl get_param preserves ordering (but is slower).

• Updates to unrelated NID ranges – different nodes - can be made in parallel without waiQng.

...plus, in general, swamping lctl is probably not a good idea.



21

Automa:ng Client Nodes

Node (NID) updates therefore use a per-node queueing system.
• Slow(er) for individual nodes; but
• Fast(er) across many.

Solution: enqueue NID updates per-node

ADD 
(host1)

DEL 
(host1)

ADD 
(host2)

Queue (host1) Queue (host2)

ADD 
(host1)

Queue (host1)

DEL 
(host1)

ADD 
(host1)

Queue (host1)Queue (host2) Queue (host2)

First Opera6on:

POST …/tenant/nids/host1

Second Opera6on:

DELETE …/tenant/nids/host1

Third Opera6on:

POST …/tenant/nids/host2

Time



22

Put It All Together

• Tenant lifecycles handled using nodemaps, filesets, SSK Keys, and a 
reconciler

• Node isolaQon handled by adding or removing NIDs from nodemaps, 
throjled by per-node queues

• InteracQons happen via REST API



23

Final Design
Drop in containers, run adjacent to a vanilla DDN / Lustre

Tenant Management

Tenant Administration

HPC Compute

GPU Node

(Tenant A)

GPU Node

(Tenant B)

Lustre Mount
/mnt/tenant_a

Lustre Mount
/mnt/tenant_b

Lustre Control API

REST API Job Enqueuing

DDN Exascaler / Lustre

Lustre 
Reconciler

MGS MDS OSS

Lustre Control Commands (lctl) & reconciler deployment

Storage Infiniband ParPPon (Limited / Full Membership)

Limited Limited Full Full Full

GET /tenants

POST /tenants/<tenant>

DELETE /tenants/<tenant>

POST /tenants/<tenant>/nids/<nid>



24

Thoughts
Nodemap authN probably shouldn't depend on node NIDs if other GSSAPI methods are present.

• NIDs can trivially be spoofed if a client's root account is compromised.

• The SSK key is important to authN a client node. The NID is not.

• This would allow us to remove the NID update queueing system.

Your milage with GSSAPI (SSK Keys and Kerberos) may vary.

• We've seen various context related race condiQons which can hang mounts on occasion.

• More usage of GSSAPI in the wild might help!

It would be great if Lustre had a high level (REST? GraphQL?) API over constructs like nodemaps.

• Although then you would have missed out on this presentaQon.

The DDN virtual appliance was extremely helpful:

• ...thanks to DDN in general and Rich Mansfield in parQcular for providing us with the lovely lightweight-vagrant-exascaler.



25

Thank you!
Any quesQons? straill@nvidia.com


