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Cambridge-1: An Approach To Dynamic Mul:tenancy
...Using NodeMaps and GSSAPI

On July 6, 2021, NVIDIA opened the Cambridge-1 
supercomputer for use by life sciences providers.

• Slurm cluster consisQng of 80 DGX A100 systems.

• MulQple tenants, each needing:
• Isolated compute
• Isolated storage

To support the datacentre, we were asked to create 
a dynamic storage plaXorm using Lustre on DDN 
Exascaler.
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(Dynamic) Mul:tenancy in a Supercomputer
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Storage (Tenant B)

Isolated Network
(Tenant B)

• Isolated Par--ons:
Tenants typically isolated at the compute, network and 
storage (Lustre) layers.
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(Dynamic) Multitenancy in a Supercomputer
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• Isolated Partitions:
Tenants typically isolated at the compute, network and 
storage (Lustre) layers.

• Nodes are more dynamic:
Nodes need to switch partitions more frequently than 
tenants as we allocate resources.
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(Dynamic) Multitenancy in a Supercomputer
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• Isolated Partitions:
Tenants isolated at the compute, network and storage 
(Lustre) layers.

• Nodes might be dynamic:
Nodes can switch partitions.

• How should we handle Storage?
• Multiple Lustre filesystems, Isolated Storage Networks?

• Need to automate (more) network provisioning, be it 
ethernet, IB, LNET

• Might need multiple storage appliances (sorry, DDN).

• Secure user level authentication, eg Kerberos?
• Need to install and operate Kerberos!
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Objec:ves
Infrastructure is hard enough already

• Encapsulated:
As few dependencies on external infrastructure as possible.

• Reusable: 
Deploy our mulQtenancy system again and again amongst 
differing surrounding infrastructure.

• Testable:
Test our system, ideally like so^ware, without needing a 
spare supercomputer.

• Defined Public Interface:
Hide complexity, and reveal only a simple (REST, in this 
case) API

GET /tenants
POST /tenants/<tenant>
DELETE /tenants/<tenant>

GET /tenants/<tenant>/<nids>
POST /tenants/<tenant>/<nids>/<nid>
DELETE /tenants/<tenant>/<nids>/<nid>

Tenant lifecycle

Per-tenant node lifecycle
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Objec:ves
Infrastructure is hard enough already

GET /tenants
POST /tenants/<tenant>
DELETE /tenants/<tenant>

GET /tenants/<tenant>/<nids>
POST /tenants/<tenant>/<nids>/<nid>
DELETE /tenants/<tenant>/<nids>/<nid>

Tenant lifecycle

Per-tenant node lifecycle

Our system needs to handle Authentication, Authorization and Isolation.

• Encapsulated:
As few dependencies on external infrastructure as possible.

• Reusable: 
Deploy our mulQtenancy system again and again amongst 
differing surrounding infrastructure.

• Testable:
Test our system, ideally like so^ware, without needing a 
spare supercomputer.

• Defined Public Interface:
Hide complexity, and reveal only a simple (REST, in this 
case) API
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SSK Key 
Match?

NID 
Match?

Mount RPC Request

Mount 
/mnt/my_tenant

False

True

True

False

Mount Denied

Mount Denied

On a single lustre filesystem:

• Create one nodemap per tenant.
Each NodeMap contains a list of NIDs (client nodes).

lctl nodemap_add my_tenant

• Create one fileset for each tenant.
Each Fileset allow access only to a top level directory.

lctl nodemap_set_fileset --name my_tenant \

--fileset /my_tenant

• Create one SSK Key for each tenant.
Clients must possess the SSK Key to mount the fileset.

lgss_sk -t client -f my_fs \

-n my_tenant \

-w my_secret_key

Authentication
With Nodemaps, Filesets and SSK Keys
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Isola:on

Encryp-on?

• Encryp-on brings a 30%-70% throughput penalty for IOPs
• Perhaps not.

Infiniband allows for "Limited" or "Full" par--on membership.
• Full network peers can talk to anyone
• Limited network members can only talk to full members

Solu-on:
• Lustre serving nodes use full IB membership.
• Lustre client nodes use limited IB membership.
• Fewer moving parts.
• We do allow encrypQon using (GSSAPI skpi) to be enabled as a config 

seeng for ethernet users...
• ...who, generally, care less about performance.

Data in flight needs to be private

Server Server Server

Client Client Client

☑ ☑☑

🚫 🚫
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Automation
How can we expose this as an API?

Lustre has a high level API... but not for the constructs we're using.

• No C developers; limited Qme.

• Instead, we implemented an API over lctl itself.

• Bind the concepts of nodemaps, filesets and ssk keys together into a tenant.

• Allow client node NIDs to be added and removed from each tenant.

GET /tenants
POST /tenants/<tenant>
DELETE /tenants/<tenant>

GET /tenants/<tenant>/<nids>
POST /tenants/<tenant>/<nids>/<nid>
DELETE /tenants/<tenant>/<nids>/<nid>

Tenant lifecycle Per-tenant node lifecycle
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Automating Tenants

Tenant provisioning is -me consuming.

• Nodemap, fileset and SSK key creaQon take a while (minutes).

• POST /tenants/<tenant>:
• Creates a state marker staAng that "<tenant> should be created".
• Returns a pollable job id.

$ curl –X POST http://lustre-api-endpoint/v1/tenants/my_tenant

{"message": "Changes were queued for processing", "jobid": 
"9e3d6fd3-70e9-4174-ab80-56d8d29e3428"}

Tenants are reconciled asynchronously.

An asynchronous reconciliaQon process constantly ensures that:

• A fileset exists for each tenant.
• An SSK has been created for each tenant.
• A nodemap exists for each tenant.
• The above are removed when a tenant has been deleted.
• The reconciler invokes lctl (and other commands) on the MGS.

An API to CRUD Lustre "tenants"

API Service

POST /tenants/my_tenant

State Markers

my_tenant: {exists: true},

Update 
Filesets

Update
SSKs

Update
Nodemaps

my_deleted_tenant: {exists: false},

Reconciler

http://lustre-api-endpoint/v1/tenants/my_tenant
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Automa:ng Client Nodes

Node provisioning changes happen far more frequently than those for tenants.

• POST /tenants/<tenant>/nids/<nid>:
• Enqueues a nodemap change operation; alters client nodes to be granted or denied access to a Nodemap.
• Returns a pollable job id.
• Can be synchronous.
• Needs to be quicker than tenant setup.

$ time curl –X POST http://lustre-api-endpoint/v1/tenants/my_tenant/nids?sync --data "{"nids": ["192.168.0.13"]}

real 0m2.569s

Tenant lifecycles can be slow; node allocations must be fast(ish).

Node API updates must be (somewhat) quicker

http://lustre-api-endpoint/v1/tenants/my_tenant/nids%3Fsync%C2%A0--data%C2%A0%2522%257b%2522nids%2522:%C2%A0%255b%2522192.168.0.13%2522%255d
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Automating Client Nodes
More haste, less speed

Lctl (or rather, the MGS) does not guarantee the order of rapid node updates.

Ordering of updates is not guaranteed (probably by design):

If you add a node to a nodemap, remove it, then add it again – quickly – the end state is unknown.

• The node might have been added, or it might not.

• Fine for a CLI; less good for a REST API.

However (aYer rather a lot of tes-ng):

• WaiQng for each NID change to be reflected via lctl get_param preserves ordering (but is slower).

• Updates to unrelated NID ranges – different nodes - can be made in parallel without waiQng.

...plus, in general, swamping lctl is probably not a good idea.
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Automa:ng Client Nodes

Node (NID) updates therefore use a per-node queueing system.
• Slow(er) for individual nodes; but
• Fast(er) across many.

Solution: enqueue NID updates per-node

ADD 
(host1)

DEL 
(host1)

ADD 
(host2)

Queue (host1) Queue (host2)

ADD 
(host1)

Queue (host1)

DEL 
(host1)

ADD 
(host1)

Queue (host1)Queue (host2) Queue (host2)

First Opera6on:

POST …/tenant/nids/host1

Second Opera6on:

DELETE …/tenant/nids/host1

Third Opera6on:

POST …/tenant/nids/host2

Time
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Put It All Together

• Tenant lifecycles handled using nodemaps, filesets, SSK Keys, and a 
reconciler

• Node isolaQon handled by adding or removing NIDs from nodemaps, 
throjled by per-node queues

• InteracQons happen via REST API
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Final Design
Drop in containers, run adjacent to a vanilla DDN / Lustre

Tenant Management

Tenant Administration

HPC Compute

GPU Node

(Tenant A)

GPU Node

(Tenant B)

Lustre Mount
/mnt/tenant_a

Lustre Mount
/mnt/tenant_b

Lustre Control API

REST API Job Enqueuing

DDN Exascaler / Lustre

Lustre 
Reconciler

MGS MDS OSS

Lustre Control Commands (lctl) & reconciler deployment

Storage Infiniband ParPPon (Limited / Full Membership)

Limited Limited Full Full Full

GET /tenants

POST /tenants/<tenant>

DELETE /tenants/<tenant>

POST /tenants/<tenant>/nids/<nid>
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Thoughts
Nodemap authN probably shouldn't depend on node NIDs if other GSSAPI methods are present.

• NIDs can trivially be spoofed if a client's root account is compromised.

• The SSK key is important to authN a client node. The NID is not.

• This would allow us to remove the NID update queueing system.

Your milage with GSSAPI (SSK Keys and Kerberos) may vary.

• We've seen various context related race condiQons which can hang mounts on occasion.

• More usage of GSSAPI in the wild might help!

It would be great if Lustre had a high level (REST? GraphQL?) API over constructs like nodemaps.

• Although then you would have missed out on this presentaQon.

The DDN virtual appliance was extremely helpful:

• ...thanks to DDN in general and Rich Mansfield in parQcular for providing us with the lovely lightweight-vagrant-exascaler.
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Thank you!
Any quesQons? straill@nvidia.com


